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Abstract

We consider the problem of placing a specified number p of facilities on the nodes
of a given network with two nonnegative edge-weight functions so as to minimize the
diameter of the placement with respect to the first distance function under diameter—
or sum-—constraints with respect to the second weight function.

Define an (a,/3)-approximation algorithm as a polynomial-time algorithm that
produces a solution within a times the optimal function value, violating the constraint
with respect to the second distance function by a factor of at most 3.

We observe that in general obtaining an (a, #)-approximation for any fixed a,3 > 1
is N'P-hard for any of these problems. We present efficient approximation algorithms
for the case, when both edge-weight functions obey the triangle inequality.

For the problem of minimizing the diameter under a diameter constraint with re-
spect to the second weight-function, we provide a (2, 2)-approximation algorithin. We
also show that no polynomial time algorithm can provide an (a,2 — €)- or (2 - ¢,/3)-
approximation for any fixed ¢ > 0 and a, > 1, unless P = A'P. This result is
proved to remain true, even if one fixes ¢/ > 0 and allows the algorithm to place only
2p/|V[V/¢-¢ facilities.

Our technigques can be extended to the case, when either the objective or the con-
straint is of sum-type and also to bandle additional weights on the nodes of the graph.
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Here ovr heuristics provide performance guarantees of (2 — 2/p,2) and (2,2 - 2/p)
respectively.

Keywords: Approximation algcrithms, Bicriteria problems, Network design, Location The-
ory and Combinatorial algorithms.



| 1 Introduction and Basic Definitions

Several fundamental problems in location theory can be modeled as finding a placement
obeyiug certain covering constraints. The goal in such location theory protlems is usually to
minimiz= a certain measure of cost associated with the placement. The cost may reflect the
price of placing the network, or it may reflect the mnaximum communication cost between
the two facilities. Examples of such cost meusures are the total edge cost and the diameter
respectively. Consider for instance a computational task consisting of a number of commu-
nicating subtasks. At a given time, some of the processors may be already allocated and the
remaining processors are available. The problem is to select a sutcet of processors from the
currently available processors, one per subtask, such that the cost of communication aniong
the processors executing the subtasks is minimized, In this application, the processors must
be allocated quickly, and this may conflict with the goal of minimum communication cost
among the selected processors. Compact location problems also arise in a number of other
applications such as allocation of manufacturing sites for the components of a system so as to
minimize the cost of transporting components, distributing the activities of a project among
geographically dispersed offices so as to minimize the transportation and communicaticn
costs among the offices, etc.

Finding a placement of facilities of sufficient generality minimizing even one of these measures
is often A"P-hard [GJ79]. Moreover, in applications that arise in real-life situztions, it is
often the case that the network to be built is required to minimize more than one cost
measure simultaneously. In this paper, we consider bicriteria problems motivated by practical
instances arising in the location theory.

The problems we consider in this paper can be termed as Compact Location problems; since
we will typically be interested in finding a “compact” placement of facilities. Consider, the
problem of placing a specified number p of facilities on the nodes of a given complete network
G = (V, E.) so as to minimize some measure of the distances between the facilities. This
problem has been studied for both diameter and sum objectives (see e.g. [RKM*+93]). The
problems have applications in statistical clustering, pattern recognition, processor allocation

and load-balancing,.

In this paper we consider extensions of these problems, where we are given two weight-
functions &, 84 on the edges of the network. The first of the functions, &, will represent the
cost of constructing an edge, while the second one, §4 stands for the actual transportation-
or communication-cost over an edge (once it has been constructed).

A general bicriteria problem, (A, B), is defined by identifying two minimization objectives
of interest from a set of possible objectives. The problem specifies a budget value on the
first objective, A, and seeks to find a network having minimum possible value for the second



objective, B, such that this solution obeys the budget on the first objective. An (a,A)-
approximation algorithmn is defined as 2 polynomial-time algorithm that produces a solution
in which the first objective value is at most a times the budget, and the second objective
value is at most S times the minimum for any solution obeying the budget on the first objec-
tive. As an example, consider the following diemeter-bounded minimum diameter problem or
(Diameter, Total cost) bicriteria problem: given an undirected graph G = (V, E) with two
different integral nonnegative weights f, (modeling the cost) and g. (modeling the delay) for
each edge e € E, a integer p denoting the number of facilities to be placed and an integral
bound B (on the total delay), find a placement of p facilities with minimum diameter under
the f-cost such that the diameter of the placement under the g—costs (the maximum delay
between any pair of nodes) is at most B.

Let G = (V, i) be a complete undirected graph with n := |V| nodes and let 2 < p < n be
the number of facilities to be placed. We call a subset P C V of cardinality p a placement.
Given a nonnegative weight- or cost-function § : E. — Q,, we will v.e D;s(P) to denote the
diameter of a placement P with respect to §, that is

Ds(P) = max é(u,v).
uyle

Similarly, we will let Ss(P) stand for the sum of the distances between facilities in the
placement P, i.e.

Ss(P) = Y 6(u,v).

u,vEP
uple

2
pp-no8(F)-
As usual, we say that a nonnegative distance § on the edges of G satisfies the triangle

inequality, if we have

We note that the average length of an edge in a placement P equals

6(v,w) < 6(v,u) + 5(u, w)
for all v,w,ue V.

The Minimum Diametcr Placement Problem, or MDP for short, is to tind a placement of
minimum diameter. Similarly, for the Minimum Average Placement Problem, also denoted
MAP, one wants to find a placement P such that S5 is minimized. Both problems are
known to be NP-hard, even when the distance § obeys the triangle inequality ((RKM193]).
Moreover, if the distances are not required to satisfy the triangle inequality, then there can
be no polynomial time relative approximation algorithm for MDP or MAFP unless P = NP,

In the sequel we will restrict ourselves to those instances of the problems, where the weights
on the edges obey the triangle inequality. Given a problem PROB, we will use PROB-TI to
denote the corresponding subset of instances, where the triangle inequality is satisfied,



We will be mainly concerned with problems, where the objective is to ninimize either the
diameter, although our results can be extended to sum objectives as well, as we will indicate

briefly in the last section. The constraints with respect to the second weight function are
either of sum or diameter type.

A constraint with respect to §. of the form
S5 (P)<Q or D (PN

will be called budget constraint. Here, we are given a budget {2 and the aim is to find a
best—possible piacement P that does not involve total building costs of more than {2 (if we
consider the suin S; (P)) or that does not involve a maximum building cost of an edge of
more than Q (in the case that we look at Dj,) respectively.

Similarly, we call a diameter or sum constraint with respect to 64 a communication constraint.
Here, we face the problem of finding a placement, which is as cheap as possible and wkere
we want to have control over the diameter or sum of the distances.

Assume that we are given the problem of finding a placement P of p nodes, minimizing
M(P) subject t> the constraint

M!(P) <9, (1
where the constraint (1) is either of budget or communicaticn type, and M stands for
either the sum of the distances or the diameter of the placemeat with respect to the second

weight function. Then we define an («, #)-approzimation algorithm to be a polynomial-time
algerithm, which for any instance I does one of the following:

(a) It produces a soluvion within a times the optimal function value, violating the con-
straint with respect to the second distance function by a factor of at most 3

(b) 1" returns the information that nu feasible placement exists at all.

Notire that, if there is no feasible placement but a placement violating the constraint by a
factor of at most 8, an («, #)-approximation algorithm has the choice of performing either
action (a) or (b).

Following [HS86), the bottleneck graph bottleneck(G,8,A) of G = (V, E) with respect to §
and a bound A is defined by

bottleneck(G, 8, A) := (V, E'), where E' := {e € E. : §(e) < A).



2 Related Work

2.1 Minimizing one cost measure

In contrast to the A"P-hardness results contained in Section 1, which hold for general dis-
tance matrices, geonmetric versions of MDP and MVP were shown to be solvable: in polynomial
time in [AIKS91). In the geometric versions of these problems, the nodes are points in space
and the distance between a pair of nodes is their Euclidean distance. For points in the
plane, [AIKS91] contains an O(p**nlogp + nlogn) algorithin for the MDP problem and
an O{p*nlogn) algorithm for the MVP problem, and it is observed that these alzorithms
extend to higher dimensions. These algorithms are based on the construction of p** order
Voronoi diagrams [Lee82, PS85).

Other work has addressed placement problems where the nbjective functions are different
from the above. For example. the traditional facility location prublems are concerned with
minimizing the maximum distance from a node to a nearest facility (p-center problem)
or minimizing the sum of the distances from each node to the nearest facility (p-median
problem) [HM79, MF90]. h >wever, for the problems considered in this paper, the objective
functions involve only the disiances between facilities. Similarly, the clustering problems
considered in the literature [HS86, FG88, Gon85) involve partitioning the given set of nodes
into clusters so as to minimize a given objective function. The location problems considered
in this paper are of a different flavor since the objective functions involve only a subset of
nodes. Facility location problems where the objective is to place facilities so as to mazimize
some function of the distances between facilities have been considered in the literature; see
for example [EN89, RRT91]. Problems in which the placement of facilities is not restricted to
the nodes of the network have also been studied [MF90]. We consider only location problems
in which the facilities are placed at the nodes of the network.

Hochbaum and Shmoys [HS86] and Dyer and Frieze [DF85) consider the node weighted
versious of center problem. Location problems with other optimizing criteria have also been
considered in the literature. Lin and Vitter [LV92] provide approximations for the s-median
problem where s median nodes must be chosen so as to minimize the sum of the distances
from each node to its nearest median. The solution method is 2y proximate in terms of both
the number of median-nodes used and the sum of the distances from each node to the nearest
median. Bar-Ilan and Peleg [BIP90! consider the balanced center problem. They provide
approximation algorithms for problem of allucating network centers wherein cach center is
allowed to service only a bounded number of nodes.



2.2 Bicriteria approximations

While there has been much work or finding minimum-cost networks for each of the cost mea-
sures that we simultaneously mininuze, there has been relatively little work on approxima-
tions for multi-objective network-design. In this direction, Bar-Ilan, Kortsarz and and Peleg
[BIPSO] considered balanced versions of the problem of assigning network centers, where a
bound is imposed on the number of nodes that any center can service. They extended exist-
ing approximation algorithms for center problems to the balanced versions. Wong [Won80)
examined a budget network design problem in which a network is to be built whose cost
is at most a certain budget such that the sum of the path-lengths of commodities to be
routed using this network is minimized. He showed that even finding near-optimal solutions
is N'P-hard if we are required to conform to the budget requirement and approximate only
the sum of path-lengths. Lin and Vitter [LV92] provided approximations for the s-median
problem where s median nodes must be chosen so as to minimize the sum of the distances
from each vertex to its nearest median. The solution output is approximate in terms of
both the number of median-nodes used and the sum of the distances from each vertex to
the nearest median. Iwainsky et al. [ICTV86] formulated a version of the minimuin—cost
Steiner problem with an additional cost based on node-degrees. Given costs and lengths on
the edges of an undirected graph, Warburton [War87) presented a fully polynomial aprrox-
imation scheme (FPAS) for the problem of constructing a path of shortest length between
two specified nodes subject to a given constraint on the cost of the path. Hassin [Has92]
presented a faster FPAS for the same problem.

Other researchers have addressed multi-objective approximation algorithms for problems
arising in areas other than network design. This includes research in the areas of computa-
tional geometry [AFMP94], numerical analysis, network design [ABP90, KRY93, Fis93] and
scheduling [ST93].

3 Finding Placements with Small Diameter Under Con-
straints

First we will consider the problem, where the objective is to minimize the maximum con-
struction cost of an edge subject to communication constraints of bottleneck type.

Definition 3.1 (Mpr with Eottleneck Constraints (MDPso))
Input:  An undirected complete graph GG = (V, E.) with two nonnegative weight functions
8..64: E. = Q4, an integer 2 < p < n and a number §) € Q4.



Output: A set P C V, |P| = p, minimizing the objective

Ds(P) = may (v, )
vylw

subject to the constraint
Ds (P) = max b4(v,w) <N

vdw

The interpretation of the model is as follows: We bave a measure §2 of what we want to have
a “guaranteed response time” between two facilities. Now the goal is to find a placement
subject to that constraint minimizing the maximum building cost of a link.

¥f one is given an iustance / of MDPy,—TI, the first question that arises is, whether there
is any feasible placement, i.e. whether there exists a placement P satisfying the constraint
D;s,(P) < Q. Unfortunately, this question turns out to be hard (cf. [RKM*93]). Indeed, we
have the following stronger harduess result:

Proposition 3.2 Let € > 0 and &' > 0 be erbitrary. Suppose that A is a polynomial time
algorithm that, given any instance of MDPy,-Tl, either returns a subset S C V of at least
W’ﬁ:r nodes satisfying D; (S) < (2 — €)Q, or provides the information that ne placement
of p nodes having communication diameter of at most Q) does ezist. Then P = N'P.

Proof: See the appendix. 0O

We can swap the roles of 8. and &) in the proof of the last proposition to show that the
optimal value of the problem can not be approximated by a factor of (2 — €). Moreover,
replacing 2 by a suitable function f € ©(2PUVD) which given an input length of Q(JV]) is
polynomial time computable, it is easy to see that, if the triangle inequality is not required to
hold, there can be no polynomial time approximation with performance ratio Q(2P°¥(IVD) for
neither the optimal function value nor the constraint (modulo P = A"P). Thus we obtain:

Lemma 3.3 Unless P = NP, for any fized ¢ > 0 and &' > 0 therc can be no polynomial
time approzimation algorithm for MDPy,,—TI that is required to place at least 2p/|V|'/6-¢
facilities and has a performance guarantee of (a,2—¢) or (2—¢,3). If the triangle inequality
is not required to hold, then the existence of an (f(|V|), 9(|V|))-approzimation algorithm for
any f,g € O(2°°YUVD) implies that P = N'P.

We now present a heuristic Heur-MDP-MAP,,,;; with a (2,2)-performance guarantee. In the
sense of lemma 3.3, this is the best approximation we can expect to obtain in polynomial
time. The heuristic is quite simple. The details of the algorithm are shown in Figure I.



PROCEDURE Heur-MDP-MAP (M)
1 G := bottleneck(G, 64,02)
2 Viand = {v € G’ : deg(v) 2 p— 1}
3 IF Vane =0 THEN RETURN “certificate of failure”
4 Let beat := +o00
5 Let Pieyt =9
6 FOR each v € Vnq DO

(a) Let N(v) be the set of p — 1 nearest neighbors of v in GG with respect to .
(b) Let P(v) := N(v)U {v}
(c) IF M5 (P(v)) < best THEN Fi,; :== P(v)

best := M, (P(v))

7 OUTPUT Pi.a

Figure 1: Details of the heuristic for MDPy and MAPy.



Theorem 3.4 Let I be any instance of of MDPyy~T/ such that an optimal solution P* of
cost diameter OPT(I) = Ds.(P*) exists. Then the algorithm Heur-MDP-MAP,., called
with M, := D;s,, returns a placement P satisfying D; (P) < 2Q and Dy (P)/OPT(1) < 2.

Proof: See the appendix. O

We now turn to the case, when the objective is to minimize the dita: ce diameter D;s, subject
lo budget—constraints of sum type. Here, we want to find a placement, that is as “compact
as possible”, while the total construction costs of all the edges between the facilities in the
placement do not exceed a given budget 2.

Definition 3.5 (MDP with Sum-Budget—Constraints (MDP,..))

Input:  An undirected complete graph G = (V, E.) with two nonnegative weight functions
6.,04: E. = Q, an integer 2 < p < n and a number 1 € Q, .

Output: A set P CV, |P| = p minimizing the objective

Ds,(P) = max é4(v, w)
veiw

and satisfying the budget-constraint
Ssc(P) = E 6,_-(!).',0_,-) S Q

'..UJEP
I.ﬁv,

Again, it is not an easy task to find a placement P satisfying the budget—constraint or
providing the information that there is no such placement respectivelv. Using a reduction
from CLIQUE one obtains:

Proposition 3.6 If the distances §.,84 are not required to satisfy the triangle inequality,
there can be no polynomial time («, 8)-approzimation algorithm for MDP,,,, for any fized
a,fi 2 1, unless P = N'P. Moreover, if there is a polynomial time (a, 1)-approzimation
algorithm for MDP,,,,-T! for any fized a > 1, then P = N'P.

The details of the proof are deferred to the appendix. We proceed to present a heuristic for
MDP,y;n~-Tl. The main procedure shown in Figure 2 uses the test procedure from Figure 3.
We have the following simple

Lemma 3.7 Assume [ is an instance of MDP,y,,, ~TI such than there is an optimal place-
ment P*. If the test procedure test\G;, 8, t) returns ¢ “certificate of failure”, then we have
OPT(I) > b4(es).



PR "EDURE Heur-Generic
1 Sort the edges of G ix ascending order with respect to §,
2 Assume now that §;(e;) < 84(ez) < --- < 64(e(:))
3 Let A, :=“certificate of failure”
4i1:=1
5 Do
(a) G; := bottleneck((7, b4, Sa(e;))

(b) Ficat := test(Gl, 6c|e:;, N)
(c)i:=i+41

6 UNTIL P, # “certificate of failure”

7 OUTPVUT Py

Figure 2: Generic bottleneck procedure



PROCEDURE test(G, 6, 1)
| Vand :={v € G:deg(v) 2 p—1}
2 IF Voenea = @ THEN RETURN “certificate of failure”
3 Let best := 400
4 Let Pyt :=9
5 FOR each v € V4,4 DO

(a) Let N(v) be the set of p — | nearest neighbors of v in GG with respect to §
(b) Let P(v) := N(v) U {v}
(c) IF Ss(P(v)) < best THEN Py, := P(v)

best := §5(P(v))

6 IF best > (2 — 2/p)} THEN RETURN “certificate of failure”
ELSE RETURN P,

Figure 3: Test Procedure used for Heur-MDP,,,,



Now we can establish the result about the performance guarantee of the heuristic:

Theorem 3.8 Let I denote any instance of MDP yn — T/ and assume that there is an optimal
placement P* of diameter OPT(I) = Ry, (P"). Then the generic bottleneck procedure Heur-
Generic with the te:* procedure test returns a placement P with S (P) < (2 — 2/p)Q2 and
D5, (I1)/OPT(I) < 2.

Proof: See the appendix. 0O

The techniques in the heuristic for MDP,,,, can be used to obtain a heuristic for an extended
version of the problem, where we are given additional weights on ihe nodes on the graph
G, representing construction costs of a facility at a specific node. The budget—constraint
here is that the total sum of the construction costs of the edges plus the sum of the cost of

the nodes should not exceed a given budgei . We formalize the problem in the following
definition:

Definition 3.9 (MDP,.», with Node Weights (MppP™°%))

Input:  An undirected complete graph G == (V, E.), two edge-weight function §.,6, : E. —
Q4+, a node weight function w: V — Q, an integer 2 < p < n and a number Q € Q,.
Output: A set P CV, |P| = p minimizing the objective

D (P) = max b4(v, w)
viw

such that
S wv)+ Y b(v.w) < Q.
veP -;c;il‘

To obtain an approximate solution for MDP2%¥ we transform a given instance / of MDp"o%

into a suitable instance I' of MDP,,,, according to the following

Lemma 3.10 Given any instance I of MDP, 4TI, we can constract an instance I' of
MDP,um - TI in polynomial time with the following property: Given a placernent for the in-
stance I' with diameter D and costs C, the same placement has diameter D and costs C
with respect to the instance 1.

Proof: Given the instance / we define an instance I’ of MDP .y, —TI as follows. We let
G' = @G, 8 := b4, P := p and define the distance function &, : E — Q. by

8(0,) = &{o,u) 4 - (0() + w(w)).



It is easy to check that the triangle inequality is satisfied for §.. Moreover, by a straightfor-
ward calculation, for any placement P of p nodes

3 o) = Tu)+ 32 8w,

a

Tbus using the heuristic for MDP,,,s for the instance I’ we can immediately obtain a (2,2 —
2/p)-approximation for MDP"?%. This results in the following

Theorem 3.11 Let | denote any instance of MDP™%-T/ and supmose P* is an optimal
placement of diameter OPT(I) = Ds,(P*). Then there is a polynomial time algorithm that
returns a placement P of total weight no more than (2—2/p)Q end diameter D;s,(1)/OPT(I) <
2.

In the special case that é.(e) = 0 for all e € E,, i.e. that there are only costs involved with
the nodes of the network G, the last result can be improved substantially. In fact, we will
now present an easy heuristic with a (2, 1)-performance guarantee, i.e. a heuristic which will
not violate the budget constraint on the costs of the nodes in the placement.

Lemma 3.12 Assume [ is an instance of MDPyod. —T1 and the test procedure node-test(G, 84, ), w)
returns a “certificate of failure”, then we have OPT(I) > 84(e;).

Proof: Straightforward. O

Theorem 3.18 Let | denote any instance of MDP 4. -TI and suppose P* is an optimal
placement of diameter OPT(I) = D;s,(P*). Then the generic bottleneck procedure Heur—
Generic with the test procedure node-test returns a placement P of weight no more than {2

and diameter Ds,(1)/OPT(I) < 2.

Proof: Straightforward. 0O

4 Extensions to the Diameter—constrained Sum of Weights

In this section we will show briefly, how the techniques in the heuristic for MDP, can be
used to obtain an approximation for the case, when the objective is of sum-type.



PROCEDURE node-test(G, §,(},w)
] Vegwd :={v € G : deg(v) > p—1}
2 IF Viansa = @ THEN RETURN “certificate of failure”
3 Let best := +o0
4 Let Popr :=9
5 FOR each v € V. DO

(a) Let N(v) be the set of p — 1 lightest neighbors of v
(b) Let P(v):= N(v) U {v}
(c) IF w(P(v)) € N AND Ds(P(v)) < beat THEN Py, := P(v)
best := Ds(P(v))

6 IF beat = +o0o THEN RETURN “certificate of failure”
ELSE RETURN Pl

Figure 4: Test Procedure used for Heur-MDP 4.



Here it seems adequate to interpret the problem in the following sense. Given a bound 2 on
the communication diameter of the placement, minimize the construction cost. We formalize
this problem:

Definition 4.1 (MAP with Bottleneck Constraints (MAPy.«))
Input:  An undirected complete graph G = (V, E;) with two nonnegative weight functions
0c,04: E. = Qy, an integer 2 < p < n and a number () € Q,.

Output: A set P C V, |P| = p minimizing the objective

SJC(P)= E 6«:(”!'1”1')

v,9;EP
v.-iv,-
subject to the constraint

D;s,(P) = max ba(v,w) <N

vew

We can use the proof for proposition 3.2, which in fact did not use any arguments involved
with the objective function, to obtain the following hardness result for MA Py,

Proposition 4.2 Unless P = NP, for any fized € > 0 and &’ > 0, there can be no polyno-
mial time algorithm for MAP,,~ T that is required to place at least l—‘,l—,’ﬁ:,v facilities and
that provides a performance guarantee of (a,2 —~ €).

We now consider the heuristic Heur-MDP-MAP,,,, from Figure 1, which has already been
used for MDPy,y, but this time called with Ms, = S5, instead of Ds,. Then we have

Theorem 4.3 Let [ be any instance of of MAPyo-TI such that an optimal solution P* of
diameter OPT(I) = Ds,(P*) ezists. Then the algorithm Heur-MDP-MAP,, callrd with
M, = 8;,, returns a placement P satisfying Ds,(P)/OPT(1) < (2—2/p) and D5, (P) < 2.

Proof: Use the arguments from the proof of theorem 3.4 to obtain the fact that the con-
straint D5, (P) < N is violated by a factor of at most 2.

Then use the techniques in the proof of theorem 3.8 to prove the performance guarantee of
(2 = 2/p) with respect to the sum of the construction costs. O



References

[ABP90]

[AFMP94)

[ATKS91]

[BIP90]

[BS94]

[DF85)

[EN89]

[FGi88)

[Fis93]

[GJ79)

(Gon85)

[Has92)

[HM79]

B. Awerbuch, A. Baratz, and D. Peleg. Cost—sensitive analysis of communication
protocols. In Proceedings of the 9th Symposium on the Principles of Distributed
Computing (PODC), pages 177-187, 1990.

E.M. Arkin, S.P. Fekete, J.S.B. Mitchell, and C.D. Piatko. Optimal Covering

Tour Problems. In Proceedings of the Fifth International Symposium on Aljo-
rithms and Computation, 1994.

A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k& points with Minimum
Diameter and Related Problems. J. Algorithms, 12(1):38-56, March 1991.

Judit Bar-Ilan and David Peleg. Approximation Algorithms for Selecting Net-
work Centers. LNCS, 519:343-354, 1990.

Mihir Bellare and Madhu Sudan. Improved Non-Approximability Results. In
Proceedings of the 26th annual ACM Symposium on the Theory of Computing, 5
1994.

M.E. Dyer and A.M. Frieze. A Simple Heuristic for the p~Center Problem.
Operations Research Letters, 3(6):285-288, Feb. 1985.

E. Erkut and S. Neuman. Analytical Models for Locating Undesirable Fucilities.
European J. of Operations Research, 40:275-291, 1989.

T. Feder and D. Greene. Optimal Algorithms for Approximate Clustering. In
ACM Symposium on Theory of Computing, pages 434-444, 1988.

T. Fischer. Optimizing the Degree of Minimum Weight Spanning Trees. Technical
report, Department of Computer Science, Cornell University, Ithaca, New York,
April 1993.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman,
1979.

T.F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance.
Theoretical Computer Science, 38:293-306, 1985.

R. Hassin. Approximation schemes for the restricted shortest path problem.
Mathematica of Operations RHesearch, 17(1):36--42, 1992,

(i.Y. Handler and P.B. Mirchandani. Location on Networks: Theory and Algo-
rithms. MIT Press, Cambridge, MA, 1979.



[HS86)

[ICTVS6)

[KRY93]

[Lee82]

[LVe2)

[MF90]

[PS85)

[RKM*93]

[RMR+93]

[RRT91]

[ST93)

[War87)

Dorit S. Hochbaum and David B. Shmoys. A Unified Approach to Approximation

Algorithms for Bottleneck Problems. Journal of the ACM, 33(3):533-550, July
1986.

A. lwainsky, E. Canuto, O. Taraszow, and A. Villa. Network decomposition for
the optimization of connection structures. Networks, 16:205-235, 1986.

S. Khuller, B. Raghavachari, and N. Young. Balancing Minimum Spanning and
Shortest Path Trees. In Proceedings of the Fourth Annual ACM-SIAM Sympo-
siuns on Discrete Algorithms, pages 243-250, 1993.

D.T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE TRans.
Comput., (-31:478-487, 1982.

Jyh-Han Lin and Jeffrey Scott Vitter. e-Approximations with Minimum Packing
Constraint Violation. In ST:C, pages 771-781, 5 1992.

P.B. Mirchandani and R.L. Francis. Discrete Location Theory. Wiley-
Interscience, New York, NY, 1990.

F.P. Preparata and M.l. Shamos. Computational Geometry: An Introduction.
Springer-Verlag Inc., New York, NY, 1985.

V. Radhakrishnan, S.0. Krumke, M.V. Marathe, D.J. Rosenkrantz, and S.S.
Ravi. Compact Location Problems. In /3th Conference on the Foundations of
Software Technology and Theoretical Computer Science, volume 761 of LNCS,
pages 238-247, December 1993.

R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and H.B. Hunt I11. Many
birds with one stone: Multi-objective approximation algorithms. In Proceedings
of the 25th Annual ACM Symposium on the Theory of Computing, pages 438-
447, 1993.

S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Facility Dispersion Problems:
Heuristics and Special Cases. In Proc. 2nd Workshop on Algorithms and Data
Structures (WADS), pages 355-366, Ottawa, Canada, August 1991. Springer
Verlag, LNCS vol. 519.

D.B. Shmoys and E. Tardos. Scheduling unrelated parallel machines with costs.
In Proceedings of the 4th Annual ACM-SIAM SODA, pages 438-447, 1993,

A. Warburton. Approximation of Pareto optima in multiple-objective, shortest
path problems. Operations Research, 35:70-79, 1987.



[Won80] R.T. Wong. Worst case analysis of network design problem heuristics. SIAM J.
Alg. Disc. Meth., 1:51-63, 1980.



Appendix: Some Proofs

Proof of Proposition 3.2:
Let I’ be an arbitrary instance of MAX-CLIQUE, given by a graph G’ = (V, E'). Without
loss of generality we can assunce that E' # §.

For each 2 < k < |V| we construct an instance I*) of MDP,~TI in the following way:
We let G® = (V',E.) (E. = {(u,v) : u,v € V,u # v}) and define 6,5 : E. — N by
6P(e) := 1for all e € 5, and

6&")(3) o { 1 ifeec F

2 else

It is trivial to see that both weight functions obey the trianglc inrequality. We let Q( := 1
and p*) := k. Notice that the size of an instance I*) is still polynomial in the size of I, and
that we have constructed only polynomially many (namely O(|V'|)) instances.

Now consider an instance (¥,

Note that any placement P of p(®) = k nodes that has communication diameter Dy (P) <
(2-€)2 = (2—<) must have diameter 1. Also, any subset S C V having diameter Dy (S) = 1
must form a clique in the original graph G'.

Assume that the original graph G’ has a clique C of size p!¥) = k. Then this clique will
satisfy Dy, (C) = Dy, (C) = 1 = Q. By our assumption, the algorithm A must return a set
S of at least T‘T‘zﬁ%" nodes with communication diameter at most (2 —¢)Q = (2 - ¢) < 2.
Thus, as noted above, the algorithm will have to find a placement of diameter 1, and this

set will form a clique in the original graph G'.

If there is no clique of size p*) = k in (", any placement P of p(*) = k nodes in G’ will
have to include at least one edge e of length &)(e) = 2 > (2 — €). Now, according to our
assumptions about A, the algorithm has the choice of either returning a set of size at least
IVI%/%' that will form a clique in the original graph or providing the information that there
is no placement P of diameter at most 2 = 1.

Thus, the output of the algorithm A can be used to either obtain the information that ('

does not contain a clique of size p'¥) = k or that G does have a clique of size at least W%_—.r

Now, we can run A for all the instances /*¥) (2 < k < |V|). Since the size of each instance /(*)
is polynomial in the size of I’ and we only have O(|V|) irstances, this will result in an over-
all polynomial time algorithm, according to our assumptions about A. Let m := max{k : A
returns a set S of diameter 1}. Then, by our observations from above, we can conclude
that (' has a clique of size at least W—If}',‘:r and that there is no clique of size m + 1 in
(i'. Hence, we can approximate the maximum clique number of G’ by a factor of at most
wtl  jy|t/e-e' < |V|1/6-¢ By the results in [BS94] this will imply that P = N'P. 0

am



Proof of Theorem 3.4:
If there is an optimal solution P* that does involve a communication diameter Dj,(P*) of
no more than {1, then by definition this placemen! does form a clique of size p in G’ :=

bottleneck(G), 84,§2). Thus in this case V.4us is non-empty and the heuristic wiil not output
a “certificate of failure”.

Moreover, any placement P(v) considered by the heuristic will form a clique in (G’)?. By
definition of G' as the bottleneck graph with respect to §; and the bound 9, it follows
by the triangle it aquality that no edge e in (G')? hes weight 64(¢) more than 2. Thus
every placement P(v) considered by the heuristic has communication diameter of at most
D;,(P(v)) of no more than 202

Let v € P* be arbitrary. Then we clearly have v € V,4. Consider the step, when the
heuristic considers v. For any w € N(v) we have §.(v,w) < OPT(!), by definition of N(v)
as the set of nearest neighbors of v and by the fact that every node from the optimal solution is
adjacent to v in G'. Thus for w, w’ € N(v) we have §.(w,w’) < §.(v, w)+6.(v,w’) < 20PT(1)
by the triangle inequality. Consequently, D;,(P(v)) = Ds.(N(v) U {v}) < 20PT(I).

Now, as the algorithm chooses the placement with minimal diameter among all the place-

ments produced, the claimed performance guarantee with respect to the cost diameter D;,
follows. O

Proof of Proposition 3.6:

We show that an algorithm A with the performance guarantee mentioned in the proposition
can be used to decide an arbitrary instance / of CLIQUE, given by a graph ¢ = (V, £) and
an integer 1 <p < n.

We define the graph in instance I’ of MDP,,,,~TI by G' = (V, E.), set ' := p(p — 1) and
define the weight functions via éy(e) := 1 for all e € E, and

1 ,ifeeE
2 , else.

(e) = {

It is now easy to see that there is a placement P satisfying S5 (P) < @' if and only if the
original graph G has a clique of size p.

If we do not require the distances to obey the triangle inequality, we can simply replace the
2 from above by a suitable large constant M and the desired result follows. 0O

Proof of Theorem 3.8:
Consider the case when 84(e;) = OPT(I). Since in (i; we have deleted only edges e having



weight é4(¢) > OPT(]) and we assume that there is a feasible solution within our budget-

constraints, it follows that the bottleneck graph G; must contain a clique C of size p such
that S;.(C) < 0.

For a node v € C let
Sei= Y b(v,w).
w€C

wye
Then we have

S8s.(C) = E S,.
veC
Now let v € C be so that S, is minimal among all nodes in C. Then clearly
S5.(C) 2 pS.. (2)

By definition of the bottlcaeck graph G; and the clique C, the node v must have degree at

least p— 1 in G;. Thus v is one of the nodes considered by the test procedure. Let N(v) be
the set of p — 1 nearest neighbors of v in G;. Then we have

Z O.(v,w) < S,, (3)

wEN(v)
wyle

by definition of N(v) as the set of nearest neighbors, P{v) := N(v) U {v}. Let w € N(v) be
arbitrary. Then

3 be(w,u) = &(w,v)+ DY b(w,u)

YEN()U{vI\{w) vEN(v)\{w}
< 6‘-(10, v) + 2 (6(-_(10, 'U) + 61‘-(”’ u))
veN(v)\{w})
= (p - l)6c(w, v) + Z 6::(0’ u)
ueN(v)\{w}
= (p—2)b(v,w)+ z bc(v,u)
weN(v)
(3d) .
< (p—2)b6(v,w) + S, (4)



Now using (4) and again (3), we obtain

Si(P(v)) = Si(N(v)u{v})

3 S(v,u)+ T L b(wu)
wEN(v) wEN(v) weN(v)IU{v)\{w)

-
=

5]
< S+ > 6c(w, u)
wEN(v) wEN(PJU{u}\{w)

Sl' + 2 ((P - 2)&,(”,“’) + S\v)
weN(v)

Se+(p~2)S, +(p-1)S,

(2P - 2)Sv

(2~ 2/p)OPT(1)

INZ |

I

Thus the placement P(v) violates the budget—constraint by a factor of at most 2 ~ 2/p.
Consequently, as the algorithm chooses the placement with A, with the least constraint-

violation, it follows that the test-procedure called with G; = bottleneck(G, 4, OPT(I)) will
not return a “certificate of failure”.

The placement R.,, that is produced by the algorithm turns into a clique in G?. Thus the
longest edge in the placement with respect to §, is at mest 20PT(/). O



